
▶ Background (#flexbox-background)

▶ Basics & Terminology (#flexbox-
basics)

Get the poster!

Reference this guide a lot? Pin
a copy up on the office wall.

(/product/css-flexbox-
poster/)

Properties for the Parent
(flex container)

display

This defines a flex container; inline or block depending
on the given value. It enables a flex context for all its
direct children.

Note that CSS columns have no effect on a flex container.

flex-direction

Properties for the Children
(flex items)

order

By default, flex items are laid out in the source order.

Buy Poster (/product/css-flexbox-poster/)

.container {

 display: flex; /* or inline-flex */

}

CSS

Guide

A Complete Guide to Flexbox
Last Updated

Jun 12, 2020

Our comprehensive guide to CSS flexbox layout. This complete guide
explains everything about flexbox, focusing on all the different
possible properties for the parent element (the flex container) and
the child elements (the flex items). It also includes history, demos,
patterns, and a browser support chart.

https://css-tricks.com/product/css-flexbox-poster/
https://css-tricks.com/product/css-flexbox-poster/

This establishes the main-axis, thus defining the
direction flex items are placed in the flex container.
Flexbox is (aside from optional wrapping) a single-
direction layout concept. Think of flex items as primarily
laying out either in horizontal rows or vertical columns.

• row (default): left to right in ltr ; right to left in rtl

• row-reverse : right to left in ltr ; left to right in rtl

• column : same as row but top to bottom

• column-reverse : same as row-reverse but bottom to
top

flex-wrap

By default, flex items will all try to fit onto one line. You
can change that and allow the items to wrap as needed
with this property.

However, the order property controls the order in which
they appear in the flex container.

flex-grow

This defines the ability for a flex item to grow if
necessary. It accepts a unitless value that serves as a
proportion. It dictates what amount of the available space
inside the flex container the item should take up.

If all items have flex-grow set to 1, the remaining space
in the container will be distributed equally to all children.
If one of the children has a value of 2, the remaining space
would take up twice as much space as the others (or it
will try to, at least).

Negative numbers are invalid.

flex-shrink

This defines the ability for a flex item to shrink if
necessary.

.container {

 flex-direction: row | row-reverse | column | column-r

}

CSS

.container {

 flex-wrap: nowrap | wrap | wrap-reverse;

CSS

.item {

 order: 5; /* default is 0 */

}

CSS

.item {

 flex-grow: 4; /* default 0 */

}

CSS

.item {

 flex-shrink: 3; /* default 1 */

}

CSS

• nowrap (default): all flex items will be on one line

• wrap : flex items will wrap onto multiple lines, from
top to bottom.

• wrap-reverse : flex items will wrap onto multiple lines
from bottom to top.

There are some visual demos of flex-wrap here
(https://css-tricks.com/almanac/properties/f/flex-
wrap/) .

flex-flow

This is a shorthand for the flex-direction and flex-
wrap properties, which together define the flex

container’s main and cross axes. The default value is row
nowrap .

justify-content

This defines the alignment along the main axis. It helps
distribute extra free space leftover when either all the
flex items on a line are inflexible, or are flexible but have
reached their maximum size. It also exerts some control
over the alignment of items when they overflow the line.

Negative numbers are invalid.

flex-basis

This defines the default size of an element before the
remaining space is distributed. It can be a length (e.g.
20%, 5rem, etc.) or a keyword. The auto keyword means
“look at my width or height property” (which was
temporarily done by the main-size keyword until
deprecated). The content keyword means “size it based
on the item’s content” – this keyword isn’t well supported
yet, so it’s hard to test and harder to know what its
brethren max-content , min-content , and fit-content
do.

If set to 0 , the extra space around content isn’t factored
in. If set to auto , the extra space is distributed based on
its flex-grow value. See this graphic.
(https://www.w3.org/TR/css3-flexbox/images/rel-vs-
abs-flex.svg)

flex

This is the shorthand for flex-grow, flex-shrink and
flex-basis combined. The second and third parameters

(flex-shrink and flex-basis) are optional. The default
is 0 1 auto , but if you set it with a single number value,
it’s like 1 0 .

It is recommended that you use this shorthand
property rather than set the individual properties. The
shorthand sets the other values intelligently.

align-self

}

.container {

 flex-flow: column wrap;

}

CSS

.container {

 justify-content: flex-start | flex-end | center | spa

}

CSS

.item {

 flex-basis: | auto; /* default auto */

}

CSS

.item {

 flex: none | [<'flex-grow'> <'flex-shrink'>? || <'fl

}

CSS

https://css-tricks.com/almanac/properties/f/flex-wrap/
https://www.w3.org/TR/css3-flexbox/images/rel-vs-abs-flex.svg

• flex-start (default): items are packed toward the
start of the flex-direction.

• flex-end : items are packed toward the end of the flex-
direction.

• start : items are packed toward the start of the
writing-mode direction.

• end : items are packed toward the end of the writing-
mode direction.

• left : items are packed toward left edge of the
container, unless that doesn’t make sense with the
flex-direction , then it behaves like start .

• right : items are packed toward right edge of the
container, unless that doesn’t make sense with the
flex-direction , then it behaves like start .

• center : items are centered along the line

• space-between : items are evenly distributed in the
line; first item is on the start line, last item on the end
line

• space-around : items are evenly distributed in the line
with equal space around them. Note that visually the
spaces aren’t equal, since all the items have equal
space on both sides. The first item will have one unit
of space against the container edge, but two units of
space between the next item because that next item
has its own spacing that applies.

• space-evenly : items are distributed so that the
spacing between any two items (and the space to the
edges) is equal.

Note that that browser support for these values is
nuanced. For example, space-between never got support
from some versions of Edge, and start/end/left/right
aren’t in Chrome yet. MDN has detailed charts
(https://developer.mozilla.org/en-
US/docs/Web/CSS/justify-content) . The safest values
are flex-start , flex-end , and center .

There are also two additional keywords you can pair with
these values: safe and unsafe . Using safe ensures that
however you do this type of positioning, you can’t push an
element such that it renders off-screen (e.g. off the top) in
such a way the content can’t be scrolled too (called “data
loss”).

align-items

This allows the default alignment (or the one specified by
align-items) to be overridden for individual flex items.

Please see the align-items explanation to understand
the available values.

Note that float , clear and vertical-align have no
effect on a flex item.

.item {

 align-self: auto | flex-start | flex-end | center | b

}

CSS

https://developer.mozilla.org/en-US/docs/Web/CSS/justify-content

This defines the default behavior for how flex items are
laid out along the cross axis on the current line. Think of
it as the justify-content version for the cross-axis
(perpendicular to the main-axis).

• stretch (default): stretch to fill the container (still
respect min-width/max-width)

• flex-start / start / self-start : items are placed
at the start of the cross axis. The difference between
these is subtle, and is about respecting the flex-
direction rules or the writing-mode rules.

• flex-end / end / self-end : items are placed at the
end of the cross axis. The difference again is subtle
and is about respecting flex-direction rules vs.
writing-mode rules.

• center : items are centered in the cross-axis

• baseline : items are aligned such as their baselines
align

The safe and unsafe modifier keywords can be used in
conjunction with all the rest of these keywords (although
note browser support (https://developer.mozilla.org/en-
US/docs/Web/CSS/align-items)), and deal with helping
you prevent aligning elements such that the content
becomes inaccessible.

align-content

.container {

 align-items: stretch | flex-start | flex-end | center

}

CSS

https://developer.mozilla.org/en-US/docs/Web/CSS/align-items

This aligns a flex container’s lines within when there is
extra space in the cross-axis, similar to how justify-
content aligns individual items within the main-axis.

Note: this property has no effect when there is only one
line of flex items.

• flex-start / start : items packed to the start of the
container. The (more supported) flex-start honors
the flex-direction while start honors the
writing-mode direction.

• flex-end / end : items packed to the end of the
container. The (more support) flex-end honors the
flex-direction while end honors the writing-mode

direction.

• center : items centered in the container

• space-between : items evenly distributed; the first line
is at the start of the container while the last one is at
the end

• space-around : items evenly distributed with equal
space around each line

• space-evenly : items are evenly distributed with equal
space around them

• stretch (default): lines stretch to take up the
remaining space

The safe and unsafe modifier keywords can be used in
conjunction with all the rest of these keywords (although
note browser support (https://developer.mozilla.org/en-
US/docs/Web/CSS/align-items)), and deal with helping
you prevent aligning elements such that the content
becomes inaccessible.

.container {

 align-content: flex-start | flex-end | center | space

}

CSS

https://developer.mozilla.org/en-US/docs/Web/CSS/align-items

▶ Examples (#flexbox-examples)

▶ Prefixing Flexbox (#flexbox-sass)

▶ Related Properties (#flexbox-related)

▶ Other Resources (#flexbox-resources)

▶ Bugs (#flexbox-bugs)

Browser Support

Broken up by “version” of flexbox:

• (new) means the recent syntax from the specification (e.g. display: flex;)

• (tweener) means an odd unofficial syntax from 2011 (e.g. display: flexbox;)

• (old) means the old syntax from 2009 (e.g. display: box;)

Chrome Safari Firefox Opera IE Edge Android iOS

20- (old)
21+ (new)

3.1+ (old)
6.1+ (new)

2-21 (old)
22+ (new)

12.1+ (new)
10 (tweener)
11+ (new)

17+ (new)
2.1+ (old)
4.4+ (new)

3.2+ (old)
7.1+ (new)

Blackberry browser 10+ supports the new syntax.

